Apicomplexan motility depends on the operation of an endocytic-secretory cycle

Author:

Gras Simon,Jimenez-Ruiz ElenaORCID,Klinger Christen M.,Lemgruber LeandroORCID,Meissner MarkusORCID

Abstract

ABSTRACTApicomplexan parasites invade host cells in an active process, involving their ability to move by gliding motility and invasion. While the acto-myosin-system of the parasite plays a crucial role in the formation and release of attachment sites during this process, there are still open questions, such as how the force powering motility is generated. In many eukaryotes a secretory-endocytic cycle leads to recycling of receptors (integrins), necessary to form attachment sites, regulation of surface area during motility and generation of retrograde membrane flow. Here we demonstrate that endocytosis operates during gliding motility in Toxoplasma gondii and appears to be crucial for the establishment of retrograde membrane flow, since inhibition of endocytosis blocks retrograde flow and motility. We identified lysophosphatidic acid (LPA) as a potent stimulator of endocytosis and demonstrate that extracellular parasites can efficiently incorporate exogenous material, such as nanogold particles. Furthermore, we show that surface proteins of the parasite are recycled during this process. Interestingly, the endocytic and secretory pathways of the parasite converge, and endocytosed material is subsequently secreted, demonstrating the operation of an endocytic-secretory cycle. Together our data consolidate previous findings and we propose a novel model that reconciles parasite motility with observations in other eukaryotes: the fountain-flow-model for apicomplexan parasite motility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3