Arid1a protects against hepatic steatosis and insulin resistance via PPARα-mediated fatty acid oxidation

Author:

Qu Yu-Lan,Deng Chuan-Huai,Luo Qing,Shang Xue-Ying,Wu Jiao-Xiang,Shi Yi,Lan-Wang ,Han Ze-Guang

Abstract

AbstractNon-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) have become a worldwide health concern because of lifestyle changes, but it is still lack of specific therapeutic strategies as the underlying molecular mechanisms remain poorly understood. Our previous study indicated that deficiency of Arid1a, a key component of SWI/SNF chromatin remodeling complex, initiated mouse steatohepatitis, implying that Arid1a might be essentially required for the integrity of hepatic lipid metabolism. However, the exact mechanisms of the pathological process due to Arid1a loss are unclear. In the present work, we show that hepatocyte-specific deletion of Arid1a significantly increases susceptibility to develop hepatic steatosis and insulin resistance in mice fed with high-fat diet (HFD), along with the aggravated inflammatory responses marked by increment of serum alanine amino transferase (AST), aspartate amino transferase (AST) and TNFα. Mechanistically, Arid1a deficiency leads to the reduction of chromatin modification characteristic of transcriptional activation on multiple metabolic genes, especially Cpt1a and Acox1, two rate-limiting enzyme genes for fatty acid oxidation. Furthermore, our data indicated that Arid1a loss promotes hepatic steatosis by downregulating PPARα, thereby impairing fatty acid oxidation which leads to lipid accumulation and insulin resistance. These findings reveal that targeting ARID1a might be a promising therapeutic strategy for NAFLD, NASH and insulin resistance.

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

1. The global NAFLD epidemic;Nature reviews. Gastroenterology & hepatology,2013

2. Nonalcoholic fatty liver disease - current status and future directions;Journal of digestive diseases,2015

3. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases;Cell metabolism,2018

4. Long-Chain Carnitine Acyltransferase and the Role of Acylcarnitine Derivatives in the Catalytic Increase of Fatty Acid Oxidation Induced by Carnitine;Journal of lipid research,1963

5. ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3