A Methodological Assessment and Characterization of Genetically-Driven Variation in Three Human Phosphoproteomes

Author:

Engelmann Brett W.ORCID,Hsiao Chiaowen JoyceORCID,Blischak John D.ORCID,Fourne Yannick,Ford Michael,Gilad Yoav

Abstract

ABSTRACTPhosphorylation of proteins on serine, threonine, and tyrosine residues is a ubiquitous post-translational modification that plays a key part of essentially every cell signaling process. It is reasonable to assume that inter-individual variation in protein phosphorylation may underlie phenotypic differences, as has been observed for practically any other molecular regulatory phenotype. However, we do not know much about the extent of inter-individual variation in phosphorylation because it is quite challenging to perform a quantitative high throughput study to assess inter-individual variation in any post-translational modification. To test our ability to address this challenge with current technology, we quantified phosphorylation levels for three genotyped human cell lines within a nested experimental framework, and found that genetic background is the primary determinant of phosphoproteome variation. We uncovered multiple functional, biophysical, and genetic associations with germline driven phosphopeptide variation. Variants affecting protein levels or structure were among these associations, with the latter presenting, on average, a stronger effect. Interestingly, we found evidence that is consistent with a phosphopeptide variability buffering effect endowed from properties enriched within longer proteins. Because the small sample size in this ‘pilot’ study may limit the applicability of our genetic observations, we also undertook a thorough technical assessment of our experimental workflow to aid further efforts. Taken together, these results provide the foundation for future work to characterize inter-individual variation in post-translational modification levels and reveal novel insights into the nature of inter-individual variation in phosphorylation.

Publisher

Cold Spring Harbor Laboratory

Reference105 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3