Bayesian and likelihood placement of fossils on phylogenies from quantitative morphometries

Author:

Parins-Fukuchi CarolineORCID

Abstract

AbstractJointly developing a comprehensive tree of life from living and fossil taxa has long been a fundamental goal in evolutionary biology. One major challenge has stemmed from difficulties in merging evidence from extant and extinct organisms. While these efforts have resulted in varying stages of synthesis, they have been hindered by their dependence on qualitative descriptions of morphology. Though rarely applied to phylogenetic inference, traditional and geometric morphometric data can improve these issues by generating more rigorous ways to quantify variation in morphological structures. They may also facilitate the rapid and objective aggregation of large morphological datasets. I describe a new Bayesian method that leverages quantitative trait data to reconstruct the positions of fossil taxa on fixed reference trees composed of extant taxa. Unlike most formulations of phylogenetic Brownian motion models, this method expresses branch lengths in units of morphological disparity, suggesting a new framework through which to construct Bayesian node calibration priors for molecular dating and explore comparative patterns in morphological disparity. I am hopeful that the approach described here will help to facilitate a deeper integration of neo- and paleontological data to move morphological phylogenetics further into the genomic era.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3