Amycomicin: a potent and specific antibiotic discovered with a targeted interaction screen

Author:

Pishchany Gleb,Mevers Emily,Ndousse-Fetter Sula,Horvath Dennis J.,R. Paludo Camila,Silva-Junior Eduardo A.,Koren Sergey,Skaar Eric P.,Clardy Jon,Kolter Roberto

Abstract

AbstractThe rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment we generated a nine-strain Actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified Amycolatopsis sp. AA4 as the producing strain and Streptomyces coelicolor M145 as an inducing strain. Bioassay-guided isolation identified amycomicin, a highly modified fatty acid containing an epoxide isonitrile warhead as a potent and specific inhibitor of Staphylococcus aureus. Amycomicin targets an essential enzyme in fatty acid biosynthesis (FabH) and reduces S. aureus infection in a mouse skin infection model. The discovery of amycomicin demonstrates the utility of screening complex communities against specific targets to discover small-molecule antibiotics.SignificanceBacteria, especially actinomycetes, produce the majority of our clinically useful small-molecule antibiotics. Genomic analyses of antibiotic-producing strains indicate that earlier discovery efforts found only a fraction of the likely antibiotic candidates. In an effort to uncover these previously missed candidates we developed an approach that utilizes the ability of microbial communities to produce antibiotics that are not produced by any single member in isolation. Successful communities were established and deconvoluted to identify both producers and inducers of antibiotic activity. One inducer-producer pair made amycomicin, a potent and specific antibiotic against Staphylococcus aureus, an important human pathogen. Amycomicin targets fatty acid biosynthesis and exhibits in vivo efficacy against skin infections in a mouse model.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3