Abstract
AbstractMany of the molecular mechanisms affected by ubiquitylation are highly conserved from yeast to humans and are associated to a plethora of diseases including cancers. To elucidate the regulatory role of epigenetic factors such as the catalytic subunits of SAGA complex, KAT-Gcn5 and Ub-protease Ubp8, on ubiquitylation of non-histone proteins we have performed a comprehensive analysis of the Ub-proteome in yeastSaccharomyces cerevisiaein strains disrupted in Gcn5, Ubp8 or both respect to wild type. We found significative alteration of ubiquitylation in proteins belonging to different functional categories with a recurrence of identical proteins in absence of Gcn5 or Ubp8 indicating shared targets and their interlaced function. Among the processes involved we noteworthy identified all major enzymes engaged in energy metabolism and glycolysis such as PFK1, PFK2 and others showing increased ubiquitylation respect to WT. We showed that the higher degree of ubiquitylation found is at post-translational level and does not depend on transcription. Noteworthy, we foundin vivosevere defects of growth in poor sugar medium and inability to adaptive switch from fermentative to respiratory growth in strains lacking Gcn5 and Ubp8. Our findings data provide a novel, direct link, between metabolism and epigenetic control with a novel role of DUB-Ubp8 and KAT-Gcn5 on the ubiquitylation marking all the main glycolytic enzymes required for an effective execution of the glycolytic flux. Collectively our experimental results and the proposed model can lead to future research and innovative strategies that by targeting epigenetic modulators might be able to lower sugar utilization also in human cells.Author SummaryMolecular mechanisms dissected in simple yeast might be translated to similar circuitries in human cells for new discoveries in human diseases including cancer. Ubiquitylation of proteins is an evolutionary conserved mechanism required for many biological processes. Different post-translational modifications (PTMs) such as ubiquitylation, acetylation, methylation etc. are reciprocally regulated for deposition or removal. Epigenetic factors writing the PTMs code are often components of multiproteic complexes such as SAGA complex that holds the K-acetyltransferase (KAT) Gcn5 and the Ubiquitin-protease (DUB) Ubp8 highly conserved in Evolution. Cells respond to environment and nutrients by changing metabolism and group of enzymes involved in specific pathways are often coregulated by the deposition of selected PTMs. This study analyses the composition and quantitation of Ub-proteins differentially modified in absence of KAT-Gcn5 and DUB-Ubp8 in yeast. Interstingly, we highlighted the role of Gcn5/Ubp8 dependent ubiquitylation in marking major glycolytic enzymes necessary for glucose utilization. Our study suggests a novel regulatory pathway and, considering that lowering glycolysis is a promising strategy to target tumor metabolism, we propose this study as an interesting perspective to lower enhanced glycolysis in tumors.
Publisher
Cold Spring Harbor Laboratory