Uncovering genomic trajectories with heterogeneous genetic and environmental backgrounds across single-cells and populations

Author:

Campbell Kieran,Yau Christopher

Abstract

AbstractPseudotime algorithms can be employed to extract latent temporal information from crosssectional data sets allowing dynamic biological processes to be studied in situations where the collection of genuine time series data is challenging or prohibitive. Computational techniques have arisen from areas such as single-cell ‘omics and in cancer modelling where pseudotime can be used to learn about cellular differentiation or tumour progression. However, methods to date typically assume homogenous genetic and environmental backgrounds, which becomes particularly limiting as datasets grow in size and complexity. As a solution to this we describe a novel statistical framework that learns pseudotime trajectories in the presence of non-homogeneous genetic, phenotypic, or environmental backgrounds. We demonstrate that this enables us to identify interactions between such factors and the underlying genomic trajectory. By applying this model to both single-cell gene expression data and population level cancer studies we show that it uncovers known and novel interaction effects between genetic and enironmental factors and the expression of genes in pathways. We provide an R implementation of our method PhenoPath at https://github.com/kieranrcampbell/phenopath

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3