Motor cortical beta transients delay movement initiation and track errors

Author:

Little Simon,Bonaiuto James,Barnes Gareth,Bestmann Sven

Abstract

ABSTRACTMotor cortical activity in the beta range (13-30 Hz) is a hallmark signature of healthy and pathological movement, but its behavioural relevance remains unclear. Recent work in primates and human sensory cortex suggests that sustained oscillatory beta activity observed on average, may arise from the summation of underlying short-lasting, high-amplitude bursts of activity. Classical human movement-related event-related beta desynchronisation (ERD) and synchronization (ERS) may thus provide insufficient, non-dynamic, summaries of underlying focal spatio-temporal burst activity, limiting insight into their functional role during healthy and pathological movement.Here we directly investigate this transient beta burst activity and its putative behavioural relevance for movement control, using high-precision magnetoencephalography (MEG). We quantified the subject-specific (n=8), trial-wise (n>12,000) dynamics of beta bursts, before and after movement. We show that beta activity on individual trials is dominated by high amplitude, short lasting bursts. While average beta changes generally manifest as bilaterally distributed activity (FWHM = 25mm), individual bursts are spatially more focal (FWHM = 6 mm), sporadic (1.3 −1.5/s), and transient (mean: 96 ms).Prior to movement (the period of the classical ERD), the timing of the last pre-movement burst predicts movement onset, suggesting a role in the specification of the goal of movement. After movement (the period of the classical ERS), the first beta burst is delayed by ~100ms after a response error occurs, intimating a role in error monitoring and evaluation.Movement-related beta activity is therefore dominated by a spatially dispersed summation of short lasting, sporadic and focal bursts. Movement-related beta bursts coordinate the retrieval and updating of movement goals in the pre- and post-movement periods, respectively.

Publisher

Cold Spring Harbor Laboratory

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3