Lung endothelium instructs dormancy of susceptible metastatic tumour cells

Author:

Jakab Moritz,Lee Ki Hong,Uvarovskii AlexeyORCID,Ovchinnikova SvetlanaORCID,Kulkarni Shubhada R,Rostalski Till,Anders Simon,Augustin Hellmut GORCID

Abstract

AbstractDuring metastasis, cancer cells hijack blood vessels and travel via the circulation to colonize distant sites1,2. Due to the rarity of these events, the immediate cell fate decisions of arrested circulating tumour cells (aCTC) are poorly understood and the role of the endothelium, as the interface of dissemination, remains elusive3,4. Here, we developed a novel strategy to specifically enrich for aCTC subpopulations capturing all cell states of the extravasation process and, in combination with single cell RNA-sequencing, provide a first blueprint of the transcriptional basis of early aCTC decisions. Upon their arrest at the metastatic site, tumour cells either started proliferating intravascularly or extravasated and preferably reached a state of quiescence. Endothelial-derived angiocrine Wnt factors were found to drive this bifurcation by inducing a mesenchymal-like phenotype in aCTCs instructing them to follow the extravasation-dormancy branch. Surprisingly, homogenous tumour cell pools showed an unexpected baseline heterogeneity in Wnt signalling activity and epithelial-to-mesenchyme-transition (EMT) states. This heterogeneity was established at the epigenetic level and served as the driving force of aCTC behaviour. Hypomethylation enabled high baseline Wnt and EMT activity in tumour cells leading them to preferably follow the extravasation-dormancy route, whereas methylated tumour cells had low activity and proliferated intravascularly. The data identify the pre-determined methylation status of disseminated tumour cells as a key regulator of aCTC behaviour in the metastatic niche. While metastatic niche-derived factors per default instruct the acquisition of quiescence, aCTCs unwind a default proliferation program and only deviate from it if hypomethylation in key gene families renders them responsive towards the microenvironment.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3