A multifaceted architectural framework of the mouse claustrum complex

Author:

Grimstvedt Joachim S.ORCID,Shelton Andrew M.ORCID,Hoerder-Suabedissen AnnaORCID,Oliver David K.ORCID,Berndtsson Christin H.,Blankvoort StefanORCID,Nair Rajeevkumar R.ORCID,Packer Adam M.ORCID,Witter Menno P.ORCID,Kentros Clifford G.ORCID

Abstract

Accurate anatomical characterizations are necessary to investigate neural circuitry on a fine scale, but for the rodent claustrum complex (CC) this has yet to be fully accomplished. The CC is generally considered to comprise two major subdivisions, the claustrum (CL) and the dorsal endopiriform nucleus (DEn), but regional boundaries to these areas are highly debated. To address this, we conducted a multifaceted analysis of fiber- and cyto-architecture, genetic marker expression, and connectivity using mice of both sexes, to create a comprehensive guide for identifying and delineating borders to the CC. We identified four distinct subregions within the CC, subdividing both the CL and the DEn into two. Additionally, we conducted brain-wide tracing of inputs to the entire CC using a transgenic mouse line. Immunohistochemical staining against myelin basic protein (MBP), parvalbumin (PV), and calbindin (CB) revealed intricate fiber-architectural patterns enabling precise delineations of the CC and its subregions. Myelinated fibers were abundant in dorsal parts of the CL but absent in ventral parts, while parvalbumin labelled fibers occupied the entire CL. Calbindin staining revealed a central gap within the CL, which was also visible at levels anterior to the striatum. Furthermore, cells in the CL projecting to the retrosplenial-cortex were located within the myelin sparse area. By combining our own experimental data with digitally available datasets of gene expression and input connectivity, we could demonstrate that the proposed delineation scheme allows anchoring of datasets from different origins to a common reference framework.Significance statementMice are a highly tractable model for studying the claustrum complex (CC). However, without a consensus on how to delineate the CC in rodents, comparing results between studies is challenging. It is therefore important to expand our anatomical knowledge of the CC, to match the level of detail needed to study its functional properties. Using multiple strategies for identifying claustral borders, we created a comprehensive guide to delineate the CC and its subregions. This anatomical framework will allow researchers to anchor future experimental data into a common reference space. We demonstrated the power of this new structural framework by combining our own experimental data with digitally available data on gene expression and input connectivity of the CC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3