Diversity and Evolution of Computationally Predicted T Cell Epitopes against Human Respiratory Syncytial Virus

Author:

Chen Jiani,Tan Swan,Avadhanula Vasanthi,Moise Leonard,Piedra Pedro A,De Groot Anne S,Bahl JustinORCID

Abstract

AbstractHuman respiratory syncytial virus (RSV) is a major cause of lower respiratory infection. Despite more than 60 years of research, there is no licensed vaccine. While B cell response is a major focus for vaccine design, the T cell epitope profile of RSV is also important for vaccine development. Here, we computationally predicted putative T cell epitopes in the Fusion protein (F) and Glycoprotein (G) of RSV wild circulating strains by predicting Major Histocompatibility Complex (MHC) class I and class II binding affinity. We limited our inferences to conserved epitopes in both F and G proteins that have been experimentally validated. We applied multidimensional scaling (MDS) to construct T cell epitope landscapes to investigate the diversity and evolution of T cell profiles across different RSV strains. We find the RSV strains are clustered into three RSV-A groups and two RSV-B groups on this T epitope landscape. These clusters represent divergent RSV strains with potentially different immunogenic profiles. In addition, our results show a greater proportion of F protein T cell epitope content conservation among recent epidemic strains, whereas the G protein T cell epitope content was decreased. Importantly, our results suggest that RSV-A and RSV-B have different patterns of epitope drift and replacement and that RSV-B vaccines may need more frequent updates. Our study provides a novel framework to study RSV T cell epitope evolution. Understanding the patterns of T cell epitope conservation and change may be valuable for vaccine design and assessment.Author SummaryLower respiratory infections caused by human respiratory syncytial virus (RSV) is a global health challenge. B cell epitope immune response has been the major focus of RSV vaccine and therapeutic development. However, T cell epitope induced immunity plays an important role in the resolution of RSV infection. While RSV genetic diversity has been widely reported, few studies focus on RSV T epitope diversity, which can influence vaccine effectiveness. Here, we use computationally predicted T cell epitope profiles of circulating strains to characterize the diversity and evolution of the T cell epitope of RSV A and B. We systematically evaluate the T epitope profile of RSV F and G proteins. We provide a T cell epitope landscape visualization that shows co-circulation of three RSV-A groups and two RSV-B groups, suggesting potentially distinct T cell immunity. Furthermore, our study shows different levels of F and G protein T cell epitope content conservation, which may be important to correlate with duration of vaccine protection. This study provides a novel framework to study RSV T cell epitope evolution, infer RSV T cell immunity at population levels and monitor RSV vaccine effectiveness.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3