A new cortical parcellation based on systematic review of primate anatomical tracing studies on corticostriatal projections

Author:

Dinh TovyORCID,Nerland StenerORCID,Maximov Ivan I.,Barth ClaudiaORCID,Vernon Anthony C.ORCID,Agartz IngridORCID,Jørgensen Kjetil NordbøORCID

Abstract

AbstractCorticostriatal projections form the input level of a circuitry that connects the cerebral cortex, basal ganglia, and thalamus. Three distinct, functional subcircuits exist according to the tripartite model: Sensorimotor cortices projecting mainly to the dorsolateral striatum; associative cortices projecting to the dorsomedial striatum and limbic cortices projecting to the ventral striatum. However, there is to date no atlas that allows researchers to label cortical projection areas belonging to each of these subcircuits separately.To address this research gap, the aim of this study was threefold: First, to systematically review anatomical tracing studies that focused on corticostriatal projections in non-human primates, and to classify their findings according to the tripartite model. Second, to develop an atlas of the human cerebral cortex based on this classification. Third, to test the hypothesis that labels in this atlas show structural connectivity with specific striatal subregions in humans using diffusion-based tractography in a sample of 24 healthy participants.In total, 98 studies met the inclusion criteria for our systematic review. Information about projections from the cortex to the striatum was systematically extracted by Brodmann area, and cortical areas were classified by their dominant efferent projections. Taking known homological and functional similarities and differences between non-human primate and human cortical regions into account, a new human corticostriatal projection (CSP) atlas was developed. Using human diffusion-based tractography analyses, we found that the limbic and sensorimotor atlas labels showed preferential structural connectivity with the ventral and dorsolateral striatum, respectively. However, the pattern of structural connectivity for the associative label showed the greatest degree of overlap with other labels.We provide this new atlas as a freely available tool for neuroimaging studies, where it allows for the first-time delineation of anatomically informed regions-of-interest to study functional subcircuits within the corticostriatal circuitry. This tool will enable specific investigations of subcircuits involved in the pathogenesis of neuropsychiatric illness such as schizophrenia and bipolar disorders.Highlights-Systematic review of anatomical projections from the cerebral cortex to the striatum in non-human primates.-Development of a novel cortical atlas for use in neuroimaging studies focusing on the corticostriatal brain circuitry.-Tractography in human diffusion-weighted imaging data to test if associative, limbic, and sensorimotor cortical atlas labels show preferential connectivity to regions within the striatum.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3