Structural conversion of α-synuclein at the mitochondria induces neuronal toxicity

Author:

Choi Minee L.ORCID,Chappard AlexandreORCID,Singh Bhanu P.ORCID,Maclachlan CatherineORCID,Rodrigues MargaridaORCID,Fedotova EvgeniaORCID,Berezhnov Alexey V.ORCID,De SumanORCID,Peddie ChrisORCID,Athauda DilanORCID,Virdi Gurvir S.ORCID,Zhang WeijiaORCID,Evans James R.ORCID,Wernick AnnaORCID,Zanjani Zeinab ShadmanORCID,Angelova Plamena R.ORCID,Esteras NoemiORCID,Vinikurov AndreyORCID,Morris KatieORCID,Jeacock KianiORCID,Tosatto LauraORCID,Little DanielORCID,Gissen PaulORCID,Clarke David J.ORCID,Kunath TiloORCID,Collinson LucyORCID,Klenerman DavidORCID,Abramov Andrey Y.ORCID,Horrocks Mathew H.ORCID,Gandhi SoniaORCID

Abstract

AbstractAggregation of α-Synuclein (α-Syn) drives Parkinson’s disease, although the initial stages of self-assembly and structural conversion have not been captured inside neurons. We track the intracellular conformational states of α-Syn utilizing a single-molecule FRET biosensor, and show that α-Syn converts from its monomeric state to form two distinct oligomeric states in neurons in a concentration dependent, and sequence specific manner. 3D FRET-CLEM reveals the structural organization, and location of aggregation hotspots inside the cell. Notably multiple intracellular seeding events occur preferentially on membrane surfaces, especially mitochondrial membranes. The mitochondrial lipid, cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial ROS generation, which accelerates the oligomerization of A53T α-Syn, and ultimately causes permeabilization of mitochondrial membranes, and cell death. Patient iPSC derived neurons harboring A53T mutations exhibit accelerated oligomerization that is dependent on mitochondrial ROS, early mitochondrial permeabilization and neuronal death. Our study highlights a mechanism of de novo oligomerization at the mitochondria and its induction of neuronal toxicity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3