Purely STDP-based assembly dynamics: stability, learning, overlaps, drift and aging

Author:

Manz Paul,Memmesheimer Raoul-Martin

Abstract

AbstractMemories may be encoded in the brain via strongly interconnected groups of neurons, called assemblies. The concept of Hebbian plasticity suggests that these assemblies are generated through synaptic plasticity, strengthening the recurrent connections within select groups of neurons that receive correlated stimulation. To remain stable in absence of such stimulation, the assemblies need to be self-reinforcing under the plasticity rule. Previous models of such assembly maintenance require additional mechanisms of fast homeostatic plasticity often with biologically implausible timescales. Here we provide a model of neuronal assembly generation and maintenance purely based on spike-timing-dependent plasticity (STDP) between excitatory neurons. It uses irregularly and stochastically spiking neurons and STDP that depresses connections of uncorrelated neurons. We find that assemblies do not grow beyond a certain size, because temporally imprecisely correlated spikes dominate the plasticity in large assemblies. Assemblies in the model can be learned or spontaneously emerge. The model allows for prominent, stable overlap structures between static assemblies. Further, assemblies can drift, particularly according to a novel, transient overlap-based mechanism. Finally the model indicates that assemblies grow in the aging brain, where connectivity decreases.Author summaryIt is widely assumed that memories are represented by ensembles of nerve cells that have strong interconnections with each other. It is to date not clear how such strongly interconnected nerve cell ensembles form, persist, change and age. Here we show that already a basic rule for activity-dependent synaptic strength plasticity can explain the learning or spontaneous formation and the stability of assemblies. In particular, it is not necessary to explicitly keep the overall total synaptic strength of a neuron nearly constant, a constraint that was incorporated in previous models in a manner inconsistent with current experimental knowledge. Furthermore, our model achieves the challenging task of stably maintaining many overlaps between assemblies and generating the experimentally observed drift of memory representations. Finally, the model predicts that if the number of synaptic connections in the brain decreases, as observed during aging, the size of the neuron ensembles underlying memories increases. This may render certain memories in the aging brain more robust and prominent but also less specific.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3