Spatio-temporal dynamics of nuclear CREB1: what does it mean?

Author:

Farias Altamirano Luz E.,Vásquez Elena,Freites Carlos L.,Ibañez Jorge E.,Guido Mario E.,Muñoz Estela M.ORCID

Abstract

AbstractIn the mammalian pineal gland (PG), cyclic AMP responsive element-binding protein 1 (CREB1) participates in the nocturnal melatonin synthesis that rhythmically modulates physiology and behavior. Phosphorylation of CREB1 present in pinealocyte nuclei is one of the key regulatory steps that drives pineal transcription. The spatio-temporal dynamics of CREB1 itself within PG cell types have not yet been documented. In this study we analyzed total CREB1 via Western blot, and the dynamism of CREB1 nuclear distribution in individual rat pinealocytes using fluorescence immunohistochemistry followed by confocal laser-scanning microscopy and quantitative analysis. Total CREB1 levels remained constant in the PG throughout the light:dark cycle. The distribution pattern of nuclear CREB1 did vary, however, among different PG cells. Pinealocytes emerged as having discrete CREB1 domains within their nucleoplasm that were especially distinct. The number, size, and location of CREB1 foci fluctuated among pinealocytes, within the same PG and among Zeitgeber times. A significantly larger dispersion of CREB1-immunoreactive nuclear sites was found at night. This was not accompanied by changes in the overall transcription activity, which was mostly conserved between the light and dark phases, as shown by the expression of a particular phosphorylated form of the RNA polymerase II (RNAPII-pSer5CTD). Suppression of the nocturnal norepinephrine pulse by chronic bilateral superior cervical ganglionectomy increased CREB1 dispersion in pinealocyte nuclei, as compared to sham-derived cells. In addition, differences in CREB1 distribution were found between sham-operated and non-operated rats at early night. Together, these data suggest that in mature pinealocytes nuclear CREB1 is subjected to a dynamic spatio-temporal distribution. Further studies are necessary to elucidate the underlying mechanisms, including the role of chromatin and interchromatin elements, and to understand the impact of CREB1 reorganization in the pineal transcriptome.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3