Neutral vs. non-neutral genetic footprints of Plasmodium falciparum multiclonal infections

Author:

Labbé FrédéricORCID,He QixinORCID,Zhan QiORCID,Tiedje Kathryn E.ORCID,Argyropoulos Dionne C.ORCID,Tan Mun HuaORCID,Ghansah AnitaORCID,Day Karen P.ORCID,Pascual MercedesORCID

Abstract

AbstractAt a time when effective tools for monitoring malaria control and eradication efforts are crucial, the increasing availability of molecular data motivates their application to epidemiology. The multiplicity of infection (MOI), defined as the number of genetically distinct parasite strains co-infecting a host, is one key epidemiological parameter for evaluating malaria interventions. Estimating MOI remains a challenge for high-transmission settings where individuals typically carry multiple co-occurring infections. Several quantitative approaches have been developed to estimate MOI, including two cost-effective ones relying on molecular data: i) THE REAL McCOIL method is based on putatively neutral single nucleotide polymorphism loci, and ii) the varcoding method is a fingerprinting approach that relies on the diversity and limited repertoire overlap of the var multigene family encoding the major Plasmodium falciparum blood-stage antigen PfEMP1 and is therefore under selection. In this study, we assess the robustness of the MOI estimates generated with these two approaches by simulating P. falciparum malaria dynamics under three transmission conditions using an extension of a previously developed stochastic agent-based model. We demonstrate that these approaches are complementary and best considered across distinct transmission intensities. While varcoding can underestimate MOI, it allows robust estimation, especially under high-transmission where repertoire overlap is extremely limited from frequency-dependent selection. In contrast, THE REAL McCOIL often considerably overestimates MOI, but still provides reasonable estimates for low- and moderate-transmission. As many countries pursue malaria elimination targets, defining the most suitable approach to estimate MOI based on sample size and local transmission intensity is highly recommended for monitoring the impact of intervention programs.Author SummaryDespite control and elimination efforts, malaria continues to be a serious public health threat especially in high-transmission regions. Molecular tools for evaluating these efforts include those seeking to estimate multiplicity (or complexity) of infection (MOI), the number of genetically distinct parasite strains co-infecting a host, a key epidemiological parameter. MOI estimation remains challenging in high-transmission regions where hosts typically carry multiple co-infections by Plasmodium falciparum. THE REAL McCOIL and the varcoding are two cost-effective methods relying on distinct parts of the parasite genome, those respectively under neutrality and selection. The more recent varcoding approach relies on the var multigene family encoding for the major blood-stage antigen and contributing to a complex immune evasion strategy of the parasite. We compare the performance of the two methods by simulating disease dynamics under different transmission intensities with a stochastic agent-based model tracking infection by different parasite genomes and immune memory in individual hosts, then sampling resulting infections to estimate MOI. Although THE REAL McCOIL provides reasonable estimates for low- and moderate-transmission, varcoding allows more robust estimates especially under high-transmission. Defining the most suitable approach to estimate MOI based on local transmission intensity is highly recommended for hyper-diverse pathogens such as malaria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3