Abstract
AbstractCells compartmentalize their components in liquid-like condensates, which can be reconstitutedin vitro. Although these condensates interact with membrane-bound organelles, the potential of membrane remodeling and the underlying mechanisms are not well understood. Here, we demonstrate that interactions between protein condensates (including hollow ones) and membranes can lead to remarkable morphological transformations and describe these with theory. Modulation of solution salinity or membrane composition drives the condensate-membrane system through two wetting transitions, from dewetting, through a broad regime of partial wetting, to complete wetting. A new phenomenon, namely fingering or ruffling of the condensate-membrane interface is observed when sufficient membrane area is available, producing intricately curved structures. The observed morphologies are governed by the interplay of adhesion, membrane elasticity, and interfacial tension. Our results highlight the relevance of wetting in cell biology, and pave the way for the design of synthetic membrane-droplet based biomaterials and compartments with tunable properties.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献