Prediction of RNA-interacting residues in a protein using CNN and evolutionary profile

Author:

Patiyal SumeetORCID,Dhall AnjaliORCID,Bajaj Khushboo,Sahu Harshita,Raghava Gajendra P.S.ORCID

Abstract

AbstractThis paper describes a method Pprint2, which is an improved version of Pprint developed for predicting RNA-interacting residues in a protein. Training and validation datasets used in this study comprises of 545 and 161 non-redundant RNA-binding proteins, respectively. All models were trained on training dataset and evaluated on the validation dataset. The preliminary analysis reveals that positively charged amino acids such as H, R, and K, are more prominent in the RNA-interacting residues. Initially, machine learning based models have been developed using binary profile and obtain maximum area under curve (AUC) 0.68 on validation dataset. The performance of this model improved significantly from AUC 0.68 to 0.76 when evolutionary profile is used instead of binary profile. The performance of our evolutionary profile based model improved further from AUC 0.76 to 0.82, when convolutional neural network has been used for developing model. Our final model based on convolutional neural network using evolutionary information achieved AUC 0.82 with MCC of 0.49 on the validation dataset. Our best model outperform existing methods when evaluated on the validation dataset. A user-friendly standalone software and web based server named “Pprint2” has been developed for predicting RNA-interacting residues (https://webs.iiitd.edu.in/raghava/pprint2 and https://github.com/raghavagps/pprint2)Key PointsMachine learning based models were developed using different profilesPSSM profile of a protein was created to extract evolutionary informationPSSM profiles of proteins were generated using PSI-BLASTConvolutional neural network based model was developed using PSSM profileWebserver, Python- and Perl-based standalone package, and GitHub is availableAuthor’s BiographySumeet Patiyal is currently working as Ph.D. in Computational Biology from Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.Anjali Dhall is currently working as Ph.D. in Computational Biology from Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.Khushboo Bajaj is currently working as MTech in Computer Science and Engineering from Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India.Harshita Sahu is currently working as MTech in Computer Science and Engineering from Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, New Delhi, India.Gajendra P. S. Raghava is currently working as Professor and Head of Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3