Multimodal monitoring of human cortical organoids implanted in mice using transparent graphene microelectrodes reveal functional connection between organoid and mouse visual cortex

Author:

Wilson Madison N.ORCID,Thunemann Martin,Liu Xin,Lu Yichen,Puppo Francesca,Adams Jason W.,Kim Jeong-Hoon,Pizzo Donald P.,Djurovic Srdjan,Andreassen Ole A.ORCID,Mansour Abed A.,Gage Fred H.,Muotri Alysson R.,Devor Anna,Kuzum Duygu

Abstract

AbstractHuman cortical organoids, three-dimensional neuronal cell cultures derived from human induced pluripotent stem cells, have recently emerged as promising models of human brain development and dysfunction. Transplantation of human brain organoids into the mouse brain has been shown to be a successful in vivo model providing vascularization for long term chronic experiments. However, chronic functional connectivity and responses evoked by external sensory stimuli has yet to be demonstrated, due to limitations of chronic recording technologies. Here, we develop an experimental paradigm based on transparent graphene microelectrode arrays and two-photon imaging for longitudinal, multimodal monitoring of human organoids transplanted in the mouse cortex. The transparency of graphene microelectrodes permits visual and optical inspection of the transplanted organoid and the surrounding cortex throughout the chronic experiments where local field potentials and multi-unit activity (MUA) are recorded during spontaneous activity and visual stimuli. These experiments reveal that visual stimuli evoke electrophysiological responses in the organoid, matching the responses from the surrounding cortex. Increases in the power of the gamma and MUA bands as well as phase locking of MUA events to slow oscillations evoked by visual stimuli suggest functional connectivity established between the human and mouse tissue. Optical imaging through the transparent microelectrodes shows vascularization of the organoids. Postmortem histological analysis exhibits morphological integration and synaptic connectivity with surrounding mouse cortex as well as migration of organoid cells into the surrounding cortex. This novel combination of stem cell and neural recording technologies could serve as a unique platform for comprehensive evaluation of organoids as models of brain development and dysfunction and as personalized neural prosthetics to restore lost, degenerated, or damaged brain regions.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

1. Generation of Functional Human 3D Cortico-Motor Assembloids

2. Berens, Philipp . 2021. ‘Circular Statistics Toolbox (Directional Statistics)’, MATLAB Central File Exchange, Accessed 03/08/2021. https://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics.

3. Chronux: A platform for analyzing neural signals

4. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3