Photovoltaic Implant Simulator Reveals the Resolution Limits in Subretinal Prosthesis

Author:

Chen Zhijie CharlesORCID,Wang Bing-YiORCID,Goldstein Anna KochnevORCID,Butt Emma,Mathieson KeithORCID,Palanker DanielORCID

Abstract

AbstractObjectiveThe photovoltaic subretinal prosthesis, PRIMA, restores central vision in patients blinded by atrophic age-related macular degeneration (AMD), with a resolution closely matching the 100 µm pixel size of the implant. Improvement in resolution requires smaller pixels, but the resultant electric field may not provide sufficient stimulation strength in the inner nuclear layer (INL) or may lead to excessive crosstalk between neighboring electrodes, giving low contrast stimulation patterns. We study approaches to shaping the electric field in the retina for prosthetic vision with higher resolution and improved contrast.ApproachWe present a new computational framework, RPSim, that efficiently computes the electric field in the retina generated by a photovoltaic implant with thousands of electrodes. Leveraging the PRIMA clinical results as a benchmark, we use RPSim to predict the stimulus strength and contrast of the electric field in the retina with various pixel designs and stimulation patterns.Main resultsWe demonstrate that by utilizing monopolar pixels as both, anodes and cathodes to suppress crosstalk, most patients may achieve resolution no worse than 48 µm. Closer proximity between the electrodes and the INL, achieved with pillar electrodes, enhances the stimulus strength and contrast and may enable 24 µm resolution with 20 µm pixels, at least in some patients.SignificanceA resolution of 24 µm on the retina corresponds to a visual acuity of 20/100, which is over 4 times higher than the current best prosthetic acuity of 20/438, promising a significant improvement of central vision for many AMD patients.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Simultaneous perception of prosthetic and natural vision in amd patients;Nature communications,2022

2. On optimal coupling of the ‘electronic photoreceptors’ into the degenerate retina;Journal of neural engineering,2020

3. Honeycomb-shaped electro-neural interface enables cellular-scale pixels in subretinal prosthesis;Scientific reports,2019

4. Photovoltaic restoration of central vision in atrophic age-related macular degeneration;Ophthalmology,2020

5. Fabrication of pillar shaped electrode arrays for artificial retinal implants;Sensors,2008

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3