Hardware evaluation of spike detection algorithms towards wireless brain machine interfaces

Author:

Oprea Alexandru,Zhang ZhengORCID,Constandinou Timothy G.ORCID

Abstract

AbstractThe current trend for implantable Brain Machine Interfaces (BMIs) is to increase the channel count, towards next generation devices that improve on information transfer rate. This however increases the raw data bandwidth for wired or wireless systems that ultimately impacts the power budget (and thermal dissipation). On-implant feature extraction and/or compression are therefore becoming essential to reduce the data rate, however the processing power is of concern. One common feature extraction technique for intracortical BMIs is spike detection. In this work, we have empirically compared the performance, resource utilization, and power consumption of three hardware efficient spike emphasizers, Non-linear Energy Operator (NEO), Amplitude Slope Operator (ASO) and Energy of Derivative (ED), and two common statistical thresholding mechanisms (using mean or median). We also propose a novel median approximation to address the issue of the median operator not being hardware-efficient to implement. These have all been implemented and evaluated on reconfigurable hardware (FPGA) to estimate their hardware efficiency in an ultimate ASIC design. Our results suggest that ED with average thresholding provides the most hardware efficient (low power/resource) choice, while using median has the advantage of improved detection accuracy and higher robustness on threshold multiplier settings. This work is significant because it is the first to implement and compare the hardware and algorithm trade-offs that have to be made before translating the algorithms into hardware instances to design wireless implantable BMIs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3