MaD: Macromolecular Descriptors for Integrative Dynamic Modeling Supported by Cryo-EM Data

Author:

Träger Sylvain,Peraro Matteo DalORCID

Abstract

AbstractThe determination of atomic structures of large flexible systems remains a challenging task despite the recent advances in cryo-electron microscopy (cryo-EM) and de novo protein structure prediction. Few hybrid methods truly consider dynamics because deriving appropriate conformational ensembles and scoring functions robust to conformational differences is not trivial. We present here Macromolecular Descriptors (MaD) which, inspired by traditional computer vision concepts, remedies some of these limitations. MaD identifies feature points and encodes local structural information around them into resolution- and conformation-invariant descriptors. Efficient matching of descriptors from cryo-EM densities at low and medium resolution with those of high-resolution component structures yields a robust and accurate assembly prediction that does not require other experimental or computational input. Fast, scalable and easy to use, this method is able to incorporate native dynamic features as extracted from molecular simulations and identify the models that best match the target electron density. Therefore, MaD addresses some of the unanswered needs of the community in terms of the integrative modeling of large and flexible macromolecular complexes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3