Abstract
AbstractAs long as the coronavirus disease 2019 (COVID-19) pandemic continues, new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with altered antigenicity will emerge. The development of vaccines that elicit robust, broad, and durable protection against SARS-CoV-2 variants is urgently needed. We have developed a vaccine (rDIs-S) consisting of the attenuated vaccinia virus DIs strain platform carrying the SARS-CoV-2 S gene. rDIs-S induced neutralizing antibody and T-lymphocyte responses in cynomolgus macaques and human angiotensin converting enzyme 2 (hACE2) transgenic mice, and showed broad protection against SARS-CoV-2 isolates ranging from the early-pandemic strain (WK-521) to the recent Omicron BA. 1 variant (TY38-839). Using a tandem mass tag (TMT) -based quantitative proteomic analysis of lung homogenates from hACE2 transgenic mice, we found that, among mice subjected to challenge infection with WK-521, vaccination with rDIs-S prevented protein expression related to the severe pathogenic effects of SARS-CoV-2 infection (tissue destruction, inflammation, coagulation, fibrosis, and angiogenesis) and restored protein expression related to immune responses (antigen presentation and cellular response to stress). Furthermore, long-term studies in mice showed that rDIs-S maintains S protein-specific antibody titers for at least 6 months after a 1st vaccination. Thus, rDIs-S appears to provide broad and durable protective immunity against SARS-CoV-2, including current and possibly future variants.
Publisher
Cold Spring Harbor Laboratory