Molecular evolution of IRG1 shapes itaconate production in metazoans and alleviates the “double-edged dilemma” of innate immune defense

Author:

Szeligowski Richard V.ORCID,Miros Francois,Saez Andres,DeCiucis Marisa,Wagner Gunter P.,Shen HongyingORCID

Abstract

AbstractItaconate is an innate immune metabolite specifically produced in stimulated immune cells via the decarboxylation of the TCA cycle intermediate cis-aconitate. Due to its inhibition of succinate-related metabolic processes, itaconate exhibits antimicrobial properties at the expense of potentially disrupting the hosts’ own central energy metabolism, a “double-edged dilemma” of immunometabolism. To understand the evolutionary logic of itaconate biosynthesis, we investigate the evolutionary trajectory of the Irg1 gene, which codes for the itaconate-producing enzyme cis-aconitate decarboxylase (CAD). Phylogenetic analysis reveals a putative independent acquisition of metazoan and fungal Irg1 from prokaryotic sources. The metazoan Irg1 underwent duplication in vertebrates and a subsequent loss of one paralog in mammals, a process that removes the mitochondrial targeting sequences (MTS) and relocates CAD outside of the mitochondrial matrix thus preventing a direct inhibition of energy metabolism. Experiments in the most diverged metazoan species that are known to contain Irg1, oysters and amphioxus, reveal that the expression of primitive Irg1 genes is induced by innate immune stimulants in invertebrates and basal chordates, suggesting an already specialized role of itaconate production for innate immune defense in early bilaterians. Our combined in silico and experimental analysis of Irg1 highlights that a trend of tightened transcriptional regulation and sequence-level change optimizes itaconate biosynthesis for innate immunity, a mechanism that may be broadly utilized to resolve other types of double-edged dilemmas in immunometabolism.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3