The evolutionary history of class I aminoacyl-tRNA synthetases indicates early statistical translation

Author:

Jabłońska Jagoda,Chun-Chen Yao,Longo Liam M.ORCID,Tawfik Dan S.,Gruic-Sovulj ItaORCID

Abstract

AbstractHow protein translation evolved from a simple beginning to its complex and accurate contemporary state is unknown. Aminoacyl-tRNA synthetases (AARSs) define the genetic code by activating amino acids and loading them onto cognate tRNAs. As such, their evolutionary history can shed light on early translation. Using structure-based alignments of the conserved core of Class I AARSs, we reconstructed their phylogenetic tree and ancestral states. Unexpectedly, AARSs charging amino acids that are assumed to have emerged later – such as TrpRS and TyrRS or LysRS and CysRS – appear as the earliest splits in the tree; conversely, those AARSs charging abiotic, early-emerging amino acids, e.g. ValRS, seem to have diverged most recently. Furthermore, the inferred Class I ancestor (excluding TrpRS and TyrRS) lacks the residues that mediate selectivity in contemporary AARSs, and appears to be a generalist that could charge a wide range of amino acids. This ancestor subsequently diverged to two clades: “charged” (which gave rise to ArgRS, GluRS, and GlnRS) and “hydrophobics”, which includes CysRS and LysRS as its outgroups. The ancestors of both clades maintain a wide-accepting pocket that could readily diverge to the contemporary, specialized families. Overall, our findings suggest a “generalist-maintaining” model of class I AARS evolution, in which early statistical translation was kept active by a generalist AARS while the evolution of a specialized, accurate translation system took place.SignificanceAminoacyl-tRNA synthetases (AARS) define the genetic code by linking amino acids with their cognate tRNAs. While contemporary AARSs leverage exquisite molecular recognition and proofreading to ensure translational fidelity, early translation was likely less stringent and operated on a different pool of amino acids. The co-emergence of translational fidelity and the amino acid alphabet, however, is poorly understood. By inferring the evolutionary history of Class I AARSs we found seemingly conflicting signals: Namely, the oldest AARSs apparently operate on the youngest amino acids. We also observed that the early ancestors had broad amino acid specificities, consistent with a model of statistical translation. Our data suggests that a generalist AARS was actively maintained until complete specialization, thereby resolving the age paradox.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peptides En Route from Prebiotic to Biotic Catalysis;Accounts of Chemical Research;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3