Community science for enigmatic ecosystems: Using eBird to assess avian biodiversity on glaciers and snowfields

Author:

Brooks William E.,Boersma Jordan,Paprocki Neil,Wimberger Peter,Hotaling ScottORCID

Abstract

AbstractAimTo quantify avian biodiversity and habitat preference and describe behavior in an enigmatic, understudied ecosystem: mountain glaciers and snowfields.LocationMountains in the Pacific Northwest of western North America: British Columbia (CA), Washington and Oregon (USA).TaxonBirds observed within our study area and focal habitat.MethodsWe used community science data from eBird—an online database of bird observations from around the world—to estimate bird biodiversity and abundance in glacier and snowfield ecosystems as well as nearby, ice-adjacent habitats. We used field notes from eBird users and breeding codes to extend our data set to include insight into habitat usage and behavior. Finally, we compared our community-science approach to previous studies that used traditional survey methods.ResultsWe identified considerable avian biodiversity in glacier and snowfield habitat (46 species) with four specialists that appeared to prefer glaciers and snowfields over nearby, ice-adjacent habitat. Combined with field notes by eBird users, our efforts increased the known global total of avian species associated with ice and snow habitats by 14%. When community science data was compared to traditional methods, we found similar species diversity but differences in abundance.Main conclusionsDespite the imminent threat of glacier and snowfield melt due to climate change, species living in these habitats remain poorly studied, likely due to the remoteness and ruggedness of their terrain. Glaciers and snowfields hold notable bird diversity, however, with a specialized set of species appearing to preferentially forage in these habitats. Our results show that community science data can provide a valuable starting point for studying difficult to access areas, but traditional surveys are still useful for more rigorous quantification of avian biodiversity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3