Preventing diabetic foot ulcers in low resource settings using Pedal Elevated Temperature Risk Assessment (PETRA)

Author:

Huemer Kayla,Wei Qingyue,Nallan Srikar,Jebasingh Felix,Palaniappan Latha

Abstract

AbstractDiabetic foot ulcers develop for up to 1 in 3 patients with diabetes. While ulcers are costly to manage and often necessitate an amputation, they are preventable if intervention is initiated early. However, with current standard of care, it is difficult to know which patients are at highest risk of developing an ulcer. Recently, thermal monitoring has been shown to catch the development of complications around 35 days in advance of onset. We seek to use thermal scans of patients’ with diabetes feet to automatically detect and classify a patient’s risk for foot ulcer development so that intervention may be initiated. We began by comparing performance of various architectures (backbone: DFTnet, ResNet50, and Swin Transformer) trained on visual spectrum images for monofilament task. We moved forward with the highest accuracy model which used ResNet50 as backbone (DFTNet acc. 68.18%, ResNet50 acc. 81.81%, Transformers: acc. 72.72%) to train on thermal images for the risk prediction task and achieved 96.4% acc. To increase interpretability of the model, we then trained this same architecture to predict two standard of care risk scores: high vs low-risk monofilament scores (81.8% accuracy) and high vs low-risk biothesiometer score (77.4% accuracy). We then sought to improve performance by facilitating the model’s learning. By annotating feet bounding boxes, we trained our own YoloV4 detector to automatically detect feet in our images (mAp accuracy of 99.7% and IoU of 86.%). By using these bounding box predictions as input to the model, this improved performance of our two classification tasks: MF 84.1%, BT 83.9%. We then sought to further improve the accuracy of these classification tasks with two further experiments implementing visual images of the feet: 1) training the models only on visual images (Risk: 97.6%, MF: 86.3%, BT: 80.6%), 2) concatenating visual images alongside the thermal images either early (E) or late (L) fusion in the architecture (Risk, E: 99.4%, L: 98.8% ; MF, E: 86.4%, L: 90.9%; BT, E: 83.9%, L: 83.9%). Our results demonstrate promise for thermal and visible spectrum images to be capable of providing insight to doctors such that they know which patients to intervene for in order to prevent ulceration and ultimately save the patient’s limb.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3