Sem1/DSS1 accelerates ATP-dependent substrate unfolding by the proteasome through a conformation-dependent intercomplex contact

Author:

Reed Randi G.ORCID,Jobin Gabriel W.,Tomko Robert J.ORCID

Abstract

ABSTRACTThe 26S proteasome is an ∼70 subunit ATP-dependent chambered protease that destroys proteins via multiple highly coordinated processing steps. The smallest and only intrinsically disordered proteasome subunit, Sem1 (DSS1 in metazoans), is critical for efficient substrate degradation despite lacking obvious enzymatic activities and being located far away from the proteasome’s catalytic centers. Dissecting its role in proteolysis using cell-based approaches has been challenging because Sem1 also controls proteasome function indirectly via its role in proteasome biogenesis. To circumvent this challenge, we reconstituted Sem1-deficient proteasomes in vitro from purified components and systematically dissected its impact on distinct processing steps. Whereas most substrate processing steps are independent of Sem1, ATP-dependent unfolding is stimulated several-fold. Using structure-guided mutagenesis and engineered protein crosslinking, we demonstrate that Sem1 allosterically regulates ATP-dependent substrate unfolding via a distal conformation-dependent intersubunit contact. Together, this work reveals how a small, unstructured subunit comprising < 0.4% the total size of the proteasome can augment substrate processing from afar, and reveals a new allosteric pathway in controlling proteolysis.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3