Age exacerbates SARS-CoV-2-induced blood-brain barrier leakage and neuropsychiatric dysfunction

Author:

Niladhuri Seshadri B.,Clare Guliz O.,Robinson KaReisha F.,Class Jacob,Almousawi Ali A.,Trevino Troy N.,Marottoli Felecia M.,Tai Leon M.,Richner JustinORCID,Lutz Sarah E.ORCID

Abstract

AbstractPersistent cognitive impairment and neuropsychiatric disorders are prevalent sequelae of SARS-CoV-2-induced COVID-19 in middle-aged adults. To model age-related neurological vulnerability to COVID-19, we induced respiratory SARS-CoV-2 MA10 infections by nasal inoculation in young (2 months) and middle-aged (12 months) mice. We hypothesized that aging and SARS-CoV-2 synergistically damage the blood-brain barrier (BBB). Indeed, the combined action of aging and SARS-CoV-2 infection caused more fibrinogen leakage, T cell infiltration, and neuroinflammation in middle-aged SARS-CoV-2-infected mice than in similarly inoculated young adults. Mechanistically, SARS-CoV-2 exacerbated age-related increases in Caveolin-1 BBB transcellular permeability and loss of Wnt/β-catenin ligands, with no apparent changes in tight junction proteins. Finally, SARS-CoV-2 infection induced age-dependent neuropsychiatric abnormalities including bradykinesia and obsessive-compulsive-like behavior. These observations indicate that cerebrovascular aging, including loss of Wnt suppression of Caveolin-1, heightens vulnerability to SARS-CoV-2-induced neuroinflammation and neuropsychiatric sequalae. Our work suggests that modulation of Wnt signaling or its downstream effectors at the BBB could be potential interventional strategies for Long COVID.HighlightsTo our knowledge, we have for the first time used a small animal model to experimentally test the impact of age on SARS-CoV-2 neuropathology.Aged mice were uniquely vulnerable to neuropsychiatric signs after SARS-CoV-2 infectionMiddle-age increased gliosis, cerebrovascular inflammation, BBB permeability, and T cell infiltration in SARS-CoV-2 infected miceBBB permeability was related to loss of Wnt7a suppression of Caveolin-1

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3