Myeloid-derived suppressor cell dynamics control outcomes in the metastatic niche

Author:

Kreger JesseORCID,Roussos Torres Evanthia T.ORCID,MacLean Adam L.ORCID

Abstract

AbstractMyeloid-derived suppressor cells (MDSCs) play a prominent and rising role in the tumor microenvironment. An understanding of the tumor-MDSC interactions that influence disease progression is critical, and currently lacking. To address this, we developed a mathematical model of metastatic growth and progression in immune-rich tumor microenvironments. We model the tumor-immune dynamics with stochastic delay differential equations, and study the impact of delays in MDSC activation/recruitment on tumor growth outcomes. We find when the circulating level of MDSCs is low, the MDSC delay has a pronounced impact on the probability of new metastatic establishment: blocking MDSC recruitment can reduce the probability of metastasis by as much as 50%. We also quantify the extent to which decreasing the immuno-suppressive capability of the MDSCs impacts the probability that a new metastasis will persist or grow. In order to quantify patient-specific MDSC dynamics under different conditions we fit individual tumors treated with immune checkpoint inhibitors to the tumor-MDSC model via Bayesian parameter inference. We reveal that control of the inhibition rate of natural killer cells by MDSCs has a larger influence on tumor outcomes than controlling the tumor growth rate directly. Posterior classification of tumor outcomes demonstrates that incorporating knowledge of the MDSC responses improves predictive accuracy from 63% to 82%. Our results illustrate the importance of MDSC dynamics in the tumor microenvironment and predict interventions that may shift environments towards a less immune-suppressed state. We argue that there is a pressing need to more often consider MDSCs in analyses of tumor microenvironments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3