DriverSEAT: A spatially-explicit stochastic modelling framework for the evaluation of gene drives in novel target species

Author:

Legros MathieuORCID,Barrett Luke G.ORCID

Abstract

AbstractGene drives represent a potentially ground breaking technology for the control of undesirable species or the introduction of desirable traits in wild population, and there is strong interest in applying these technologies to a wide range of species across many domains including agriculture, health, conservation and biosecurity. There remains however considerable uncertainty regarding the feasibility and efficacy of gene drives in various species, based in particular on biological and ecological specificities of each target. In this paper we introduce DriverSEAT, a new spatial, modular modelling framework designed to assess the outcome of gene drives in a range of target species based on their specific ecological dynamics and genetics. In addition to the main structure and characteristics of the model, we present an example of its application on scenarios of genetic control of weeds, a potential candidate for gene drive control that presents significant challenges associated with plant population dynamics. We illustrate here how the results from DriverSEAT can inform on the potential value of gene drives in this specific context, and generally provide ecologically informed guidance for the development and feasibility of gene drives as a control method in new target species.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3