Demystifying the role of prognostic biomarkers in breast cancer through integrated transcriptome and pathway enrichment analyses

Author:

Mishra Divya,Mishra Ashish,Singh M.P.

Abstract

AbstractBreast cancer (BC) is the most commonly diagnosed cancer and the leading cause of death in women. There has been discovered an increasing number of molecular targets for BC prognosis and therapy. However, it is still urgent to identify new biomarkers. Therefore, we evaluated biomarkers that may contribute to the diagnosis and treatment of BC. We searched TCGA datasets and identified differentially expressed genes (DEGs) by comparing tumor (100 samples) and non-tumor (100 samples) tissues using the Deseq2 package. Pathway and functional enrichment analysis of the DEGs were done using DAVID (The Database for Annotation, Visualization, and Integrated Discovery) database. The protein-protein interaction (PPI) network was identified using the STRING database and visualized through Cytoscape software. Hub gene analysis of the PPI network was done using Cytohubba plugins. The associations between the identified genes and overall survival (OS) were analyzed using Kaplan–Meier plot. Finally, we have identified hub genes at the transcriptome level. A total of 824 DEGs were identified, which were mostly enriched in cell proliferation, signal transduction, and cell division. The PPI network comprised 822 nodes and 12145 edges. Elevated expression of the 5 hub genes AURKA, BUB1B, CCNA2, CCNB2, and PBK are related to poor OS in breast cancer patients. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability leading to improper chromosome segregation causing aneuploidy. The enriched functions and pathways included the cell cycle, oocyte meiosis, and the p53 signaling pathway. The identified five hub genes in breast cancer have the potential to become useful targets for the diagnosis and treatment of breast cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3