Abstract
AbstractDisinfection is an important strategy to limit the spread of infections. Failure of disinfection may facilitate evolution of resistance against disinfectants and antibiotics through the processes of cross-resistance and co-resistance. The best possible outcome of disinfection minimizes the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Here, we investigated how phenotypic heterogeneity affects the ability of E. coli to survive treatment with six different substances commonly used as active substances in disinfectants, preservatives and antiseptics. A mathematical model which assumes that phenotypic heterogeneity underlies the observed disinfection kinetics was used to infer whether time-kill kinetics were caused by a tolerant subpopulation. The analysis identified bimodal kill kinetics for benzalkonium chloride (BAC), didecyldimethylammonium chloride (DDAC), and isopropanol (Iso). In contrast, kill kinetics by chlorhexidine (CHX), glutaraldehyde (GTA), and hydrogen peroxide (H2O2) were best explained by unimodal kill kinetics underpinned by a broad distribution of tolerance times for CHX as opposed to a narrow distribution of tolerance times for GTA and H2O2. These findings have implications for the risk of disinfection failure, with potential consequences for the evolution of antimicrobial resistance and tolerance.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献