Time-kill kinetics reveal heterogeneous tolerance to disinfectants

Author:

Nordholt NiclasORCID,Lewerenz Dominique,Schreiber FrankORCID

Abstract

AbstractDisinfection is an important strategy to limit the spread of infections. Failure of disinfection may facilitate evolution of resistance against disinfectants and antibiotics through the processes of cross-resistance and co-resistance. The best possible outcome of disinfection minimizes the number of surviving bacteria and the chance for resistance evolution. Resistance describes the ability to grow in previously inhibitory concentrations of an antimicrobial, whereas tolerance is associated with enhanced survival of lethal doses. Individual bacteria from the same population can display considerable heterogeneity in their ability to survive treatment (i.e. tolerance) with antimicrobials, which can result in unexpected treatment failure. Here, we investigated how phenotypic heterogeneity affects the ability of E. coli to survive treatment with six different substances commonly used as active substances in disinfectants, preservatives and antiseptics. A mathematical model which assumes that phenotypic heterogeneity underlies the observed disinfection kinetics was used to infer whether time-kill kinetics were caused by a tolerant subpopulation. The analysis identified bimodal kill kinetics for benzalkonium chloride (BAC), didecyldimethylammonium chloride (DDAC), and isopropanol (Iso). In contrast, kill kinetics by chlorhexidine (CHX), glutaraldehyde (GTA), and hydrogen peroxide (H2O2) were best explained by unimodal kill kinetics underpinned by a broad distribution of tolerance times for CHX as opposed to a narrow distribution of tolerance times for GTA and H2O2. These findings have implications for the risk of disinfection failure, with potential consequences for the evolution of antimicrobial resistance and tolerance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3