Chromatin-immunoprecipitation reveals the PnPf2 transcriptional network controlling effector-mediated virulence in a fungal pathogen of wheat

Author:

John EvanORCID,Singh Karam B.ORCID,Oliver Richard P.,Soyer Jessica L.ORCID,Muria-Gonzalez JordiORCID,Soo Daniel,Jacques SilkeORCID,Tan Kar-ChunORCID

Abstract

AbstractThe regulation of virulence in plant-pathogenic fungi has emerged as a key area of importance underlying host infections. Recent work has highlighted the role of transcription factors (TFs) that mediate the expression of virulence-associated genes. A prominent example is Pf2, a member of the Zn2Cys6 family of fungal TFs, where orthologues regulate the expression of genes linked to parasitism in several plant-pathogen lineages. These include PnPf2 which controls effector-gene expression in Parastagonospora nodorum, thereby determining the outcome of effector-triggered susceptibility on its host, wheat. PnPf2 is a promising target for disease suppression but the genomic targets, or whether other are regulators involved, remain unknown. This study used chromatin immunoprecipitation (ChIP-seq) and a mutagenesis analysis to investigate these components. Two distinct binding motifs connected to positive gene-regulation were characterised and genes directly targeted by PnPf2 were identified. These included genes encoding major effectors and other components associated with the P. nodorum pathogenic lifestyle, such as carbohydrate-active enzymes and nutrient assimilators. This supports a direct involvement of PnPf2 in coordinating virulence on wheat. Other TFs were also prominent PnPf2 targets, suggesting it also operates within a transcriptional network. Several TFs were therefore functionally investigated in connection to fungal virulence. Distinct metabolic and developmental roles were evident for the newly characterised PnPro1, PnAda1, PnEbr1 and the carbon-catabolite repressor PnCreA. Overall, the results uphold PnPf2 as the central transcriptional regulator orchestrating genes that contribute to virulence on wheat and provide mechanistic insight into how this occurs.ImportanceFungal pathogens cause large crop losses worldwide and consequently much attention has focused on improving host genetic resistance to diseases. These pathogens use effectors, which require coordinated expression at specific stages of the pathogenic lifecycle, to manipulate the host plant metabolism in favour of infection. However, our understanding of the underlying regulatory network in coordination with other genes involved in fungal pathogenicity is lacking. The Pf2 TF orthologues are key players underpinning virulence and effector gene expression in several fungal phytopathogens, including P. nodorum. This study provided significant insight into the DNA-binding regulatory mechanisms of P. nodorum PnPf2, as well as further evidence that it is central to the coordination of virulence. In the context of crop protection, the Pf2 taxonomic orthologues present opportune targets in major fungal pathogens that can be perturbed to reduce the impact of effector triggered-susceptibility and improve disease resistance.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3