M3CV:A Multi-subject, Multi-session, and Multi-task database for EEG-based Biometrics Challenge

Author:

Huang GanORCID,Hu Zhenxing,Chen Weize,Liang Zhen,Li Linling,Zhang Li,Zhang Zhiguo

Abstract

AbstractEEG signals exhibit commonality and variability across subjects, sessions, and tasks. But most existing EEG studies focus on mean group effects (commonality) by averaging signals over trials and subjects. The substantial intra- and inter-subject variability of EEG has often been overlooked. The recently significant technological advances in machine learning, especially deep learning, have brought technological innovations to EEG signal application in many aspects, but there are still great challenges in cross-session, cross-task, and cross-subject EEG decoding. In this work, an EEG-based biometric competition based on a large-scale M3CV (A Multi-subject, Multi-session, and Multi-task Database for investigation of EEG Commonality and Variability) database was launched to better characterize and harness the intra- and inter-subject variability and promote the development of machine learning algorithm in this field. In the M3CV database, EEG signals were recorded from 106 subjects, of which 95 subjects repeated two sessions of the experiments on different days. The whole experiment consisted of 6 paradigms, including resting-state, transient-state sensory, steady-state sensory, cognitive oddball, motor execution, and steady-state sensory with selective attention with 14 types of EEG signals, 120,000 epochs. With the learning tasks of the identification and verification, the performance metrics and baseline methods were introduced in the competition. In general, the proposed M3CV dataset and the EEG-based biometric competition aim to provide the opportunity to develop advanced machine learning algorithms for achieving an in-depth understanding of the commonality and variability of EEG signals across subjects, sessions, and tasks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3