Genetic susceptibility to earlier ovarian ageing increases de novo mutation rate in offspring

Author:

Stankovic Stasa,Shekari Saleh,Huang Qin Qin,Gardner Eugene J.,Owens Nick D. L.,Azad Ajuna,Hawkes Gareth,Kentistou Katherine A.,Beaumont Robin N.,Day Felix R.,Zhao Yajie,Kennedy Kitale,Wood Andrew R.,Weedon Michael N.,Ong Ken K.,Wright Caroline F.,Hoffmann Eva R.ORCID,Hurles Matthew E.,Ruth Katherine S.ORCID,Martin Hilary C.,Perry John R. B.,Murray Anna,

Abstract

AbstractHuman genetic studies have provided substantial insight into the biological mechanisms governing ovarian ageing, yet previous approaches have been largely restricted to assessing common genetic variation. Here we report analyses of rare (MAF<0.1%) protein-coding variants in the exomes of 106,973 women from the UK Biobank study, implicating novel genes with effect sizes up to ∼5 times larger than previously discovered in analyses of common variants. These include protein truncating variants in ZNF518A, which shorten reproductive lifespan by promoting both earlier age at natural menopause (ANM, 5.61 years [4.04-7.18], P=2*10-12) and later puberty timing in girls (age at menarche, 0.56 years [0.15-0.97], P=9.2*10-3). By integrating ChIP-Seq data, we demonstrate that common variants associated with ANM and menarche are enriched in the binding sites of ZNF518A. We also identify further links between ovarian ageing and cancer susceptibility, highlighting damaging germline variants in SAMHD1 that delay ANM and increase all-cause cancer risk in both males (OR=2.1 [1.7-2.6], P=4.7*10-13) and females (OR=1.61 [1.31-1.96], P=4*10-6). Finally, we demonstrate that genetic susceptibility to earlier ovarian ageing in women increases de novo mutation rate in their offspring. This provides direct evidence that female mutation rate is heritable and highlights an example of a mechanism for the maternal genome influencing child health.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3