MmCMS: Mouse models’ Consensus Molecular Subtypes of colorectal cancer

Author:

Amirkhah Raheleh,Gilroy Kathryn,Malla Sudhir BORCID,Lannagan Tamsin RM,Byrne Ryan M,Fisher Natalie C,Corry Shania M,Naderi-Meshkin Hojjat,Ahmaderaghi Baharak,Murray Richard,Mills Megan,Campbell Andrew D.,Llergo Antoni Berenguer,Sanz-Pamplona Rebeca,Villanueva Alberto,Batlle Eduard,Salazar Ramon,Lawler Mark,Sansom Owen J.,Dunne Philip D.ORCID,

Abstract

AbstractBACKGROUNDColorectal cancer (CRC) primary tumours are molecularly classified into four consensus molecular subtypes (CMS1-4). Genetically engineered mouse models aim to faithfully mimic the complexity of human cancers and, when appropriately aligned, represent ideal pre-clinical systems to test new drug treatments. Despite its importance, dual-species classification has been limited by the lack of a reliable approach. Here we utilise, develop and test a set of options for human-to-mouse CMS classifications of CRC tissue.METHODSUsing transcriptional data from established collections of CRC tumours, including human (TCGA cohort; n=577) and mouse (n=57 across n=8 genotypes) tumours with combinations of random forest and nearest template prediction algorithms, alongside gene ontology collections, we comprehensively assess the performance of a suite of new dual-species classifiers.RESULTSWe developed three approaches: MmCMS-A; a gene-level classifier, MmCMS-B; an ontology-level approach and MmCMS-C; a combined pathway system encompassing multiple biological and histological signalling cascades. Although all options could identify tumours associated with stromal-rich CMS4-like biology, MmCMS-A was unable to accurately classify the biology underpinning epithelial-like subtypes (CMS2/3) in mouse tumours.CONCLUSIONSWhen applying human-based transcriptional classifiers to mouse tumour data, a pathway-level classifier, rather than an individual gene-level system, is optimal. Our R package with three options helps researchers select suitable mouse models of human CRC subtype for their experimental testing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3