Trajectories for the evolution of bacterial CO2-concentrating mechanisms

Author:

Flamholz Avi I.ORCID,Dugan EliORCID,Panich Justin,Desmarais John J.ORCID,Oltrogge Luke M.ORCID,Fischer Woodward W.,Singer Steven W.ORCID,Savage David F.ORCID

Abstract

AbstractCyanobacteria rely on CO2 concentrating mechanisms (CCMs) that depend on ≈15 genes to produce two protein complexes: an inorganic carbon (Ci) transporter and a 100+ nm carboxysome compartment that encapsulates rubisco with a carbonic anhydrase (CA) enzyme. Mutations disrupting CCM components prohibit growth in today’s atmosphere (0.04% CO2), indicating that CCMs evolved to cope with declining environmental CO2. Indeed, geochemical data and models indicate that atmospheric CO2 has been generally decreasing from high concentrations over the last ≈3.5 billion years. We used a synthetic reconstitution of a bacterial CCM in E. coli to study the co-evolution of CCMs with atmospheric CO2. We constructed strains expressing putative ancestors of modern CCMs — strains lacking one or more CCM components — and evaluated their growth in a variety of CO2 concentrations. Partial forms expressing CA or Ci uptake genes grew better than controls in intermediate CO2 levels (≈1%); we observed similar phenotypes in genetic studies of two autotrophic bacteria, H. neapolitanus and C. necator. To explain how partial CCMs improve growth, we advance a model of co-limitation of autotrophic growth by CO2 and HCO3-, as both are required to produce biomass. Our model and results delineated a viable trajectory for bacterial CCM evolution where decreasing atmospheric CO2 induces an HCO3- deficiency that is alleviated by acquisition of CAs or Ci uptake genes, thereby enabling the emergence of a modern CCM. This work underscores the importance of considering physiology and environmental context when studying the evolution of biological complexity.SignificanceThe greenhouse gas content of the ancient atmosphere is estimated using models and measurements of geochemical proxies. Some inferred high ancient CO2 levels using models of biological CO2 fixation to interpret the C isotopes found in preserved organic matter. Others argued that elevated CO2 could reconcile a faint young Sun with evidence for liquid water on Earth. We took a complementary “synthetic biological” approach to understanding the composition of the ancient atmosphere by studying present-day bacteria engineered to resemble ancient autotrophs. By showing that it is simpler to rationalize the emergence of modern bacterial autotrophs if CO2 was once high, these investigations provided independent evidence for the view that CO2 concentrations were significantly elevated in the atmosphere of early Earth.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3