Multimodal single-cell analysis of non-random heteroplasmy distribution in human retinal mitochondrial disease

Author:

Mullin Nathaniel KORCID,Voigt Andrew P,Flamme-Wiese Miles J,Liu Xiuying,Riker Megan J,Varzavand Katayoun,Stone Edwin M,Tucker Budd A,Mullins Robert F

Abstract

Variants within the high copy number mitochondrial genome (mtDNA) can disrupt organelle function and lead to severe multi-system disease. The wide range of manifestations observed in mitochondrial disease patients results from varying fractions of abnormal mtDNA molecules in different cells and tissues, a phenomenon termed heteroplasmy. However, the landscape of heteroplasmy across cell types within tissues and its influence on phenotype expression in affected patients remains largely unexplored. Here, we identify non- random distribution of a pathogenic mtDNA variant across a complex tissue using single-cell RNA sequencing, mitochondrial single-cell ATAC sequencing, and multimodal single-cell sequencing. We profile the transcriptome, chromatin accessibility state, and heteroplasmy in cells from the eyes of a patient with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and healthy control donors. Utilizing the retina as a model for complex multi-lineage tissues, we found that the proportion of the pathogenic m.3243A>G allele was neither evenly nor randomly distributed across diverse cell types. All neuroectoderm- derived neural cells exhibited a high percentage of the mutant variant. However, a subset of mesoderm- derived lineage, namely the vasculature of the choroid, was near homoplasmic for the wildtype allele. Gene expression and chromatin accessibility profiles of cell types with high and low proportions of m.3243A>G implicate mTOR signaling in the cellular response to heteroplasmy. We further found by multimodal single-cell sequencing of retinal pigment epithelial cells that a high proportion of the pathogenic mtDNA variant was associated with transcriptionally and morphologically abnormal cells. Together, these findings show the non- random nature of mitochondrial variant partitioning in human mitochondrial disease and underscore its implications for mitochondrial disease pathogenesis and treatment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3