3D melanoma spheroid model for the development of positronium biomarker

Author:

Karimi HaniehORCID,Moskal PawełORCID,Stępień Ewa Ł.ORCID

Abstract

AbstractIt was recently demonstrated that newly invented positronium imaging may be used for improving cancer diagnostics by providing additional information about tissue pathology with respect to the standardized uptake value currently available in positron emission tomography (PET). Positronium imaging utilizes properties of a positronium atoms, which are built from the electron and positron produced in the body during PET examinations.We hypothesized whether positronium imaging would be sensitive to in vitro discrimination of tumour-like three-dimensional structures (spheroids) build of melanoma cell lines with different cancer activity and biological properties.The lifetime of ortho-Positronium (o-Ps) was evaluated in melanoma spheroids from two cell lines (WM266-4 and WM115) differing in the stage of malignancy. Additionally, we considered such parameters: as cell size, proliferation rate and malignancy to evaluate their relationship with o-Ps lifetime. We demonstrate the pilot results for the o-Ps lifetime measurement in extracellular matrix free spheroids. With the statistical significance of two standard deviations, we demonstrated that the higher the degree of malignancy and the rate of proliferation of neoplastic cells the shorter the lifetime of ortho-positronium. In particular we observed following indications encouraging further research: (i) WM266-4 spheroids characterized with higher proliferation rate and malignancy showed shorter o-Ps lifetime compared to WM115 spheroids characterized by lower growth rate, (ii) Both cell lines showed a decrease in the lifetime of o-Ps after spheroid generation in 8th day comparing to 4th day in culture and the mean o-Ps lifetime is longer for spheroids formed from WM115 cells than these from WM266-4 cells, regardless spheroid age. The results of these study revealed that positronium is a promising biomarker that may be applied in PET diagnostics for the assessment of the degree of cancer malignancy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3