From Easy to Hopeless - Predicting the Difficulty of Phylogenetic Analyses

Author:

Haag JuliaORCID,Höhler Dimitri,Bettisworth BenORCID,Stamatakis AlexandrosORCID

Abstract

AbstractPhylogenetic analyses under the Maximum Likelihood model are time and resource intensive. To adequately capture the vastness of tree space, one needs to infer multiple independent trees. On some datasets, multiple tree inferences converge to similar tree topologies, on others to multiple, topologically highly distinct yet statistically indistinguishable topologies. At present, no method exists to quantify and predict this behavior. We introduce a method to quantify the degree of difficulty for analyzing a dataset and present Pythia, a Random Forest Regressor that accurately predicts this difficulty. Pythia predicts the degree of difficulty of analyzing a datasetpriorto initiating Maximum Likelihood based tree inferences. Pythia can be used to increase user awareness with respect to the amount of signal and uncertainty to be expected in phylogenetic analyses, and hence inform an appropriate (post-)analysis setup. Further, it can be used to select appropriate search algorithms for easy-, intermediate-, and hard-to-analyze datasets.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Split decomposition: A new and useful approach to phylogenetic analysis of distance data

2. Bayesian Model Adequacy and Choice in Phylogenetics

3. Random forests;Machine Learning,2001

4. Exelixis-Lab 2022. Core RAxML library (coraxlib). Available from: https://codeberg.org/Exelixis-Lab/coraxlib.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3