On the Interaction of Biopotential Sensing and Right Leg Drive System with Electro-Quasistatic Human Body Communication

Author:

Sriram Shreeya,Polachan KurianORCID,Sen Shreyas

Abstract

AbstractContinuous long-term sensing of biopotential signals is vital to facilitate accurate diagnosis. The current state of the art in wearable health monitoring relies on radiative technology for communication. Due to their radiative nature, these systems result in lossy and inefficient transmission, limiting the device’s life span. Human Body Communication has emerged as an energy-efficient secure communication modality, and literature has shown body communication to transmit biopotential signals at 100x lower power than traditional radiative technologies. Unlike radiative communication that uses airwaves, HBC, specifically Capacitive Electro-Quasistatic HBC (EQS-HBC), couple signals and confine them within the human body. In Capacitive EQS-HBC, the transmitter uses an electrode to modulate the body potential to transmit data. The modulation of body potential by HBC raises the following concerns. Will HBC transmissions affect the quality of biopotential signals sensed from the body? Additionally, since biopotential sensing systems commonly use Right Leg Drive (RLD) to bias body potential, there is also a concern if RLD can affect the quality of HBC transmissions.For the first time, our work studies the interactions between EQS-HBC and biopotential sensing. Our work is important since understanding HBC-RLD interactions is integral to developing EQS-HBC-based biosensors for Body Area Networks (BANs). For the studies, we conducted lab experiments and developed circuit theoretic models to back the experimental outcomes. We show that due to their higher frequency content and commonmode nature, HBC transmissions do not affect the differential sensing of low-frequency biopotential signals. We show that biopotential sensing using RLD affects HBC. RLD deteriorates the signal strength of HBC transmissions. We thus propose not to use RLD with HBC. We demonstrate our proposed solution by transmitting ECG signals using HBC with 96% correlation compared to the traditional wireless system at a fraction of the power.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3