Wildebeest Herds on Rolling Hills: Flocking on Arbitrary Curved Surfaces

Author:

Hueschen Christina L.ORCID,Dunn Alexander R.ORCID,Phillips RobORCID

Abstract

AbstractThe collective behavior of active agents, whether herds of wildebeest or microscopic actin filaments propelled by molecular motors, is an exciting frontier in biological and soft matter physics. Almost three decades ago, Toner and Tu developed a hydrodynamic theory of the collective action of flocks, or herds, that helped launch the modern field of active matter. One challenge faced when applying continuum active matter theories to living phenomena is the complex geometric structure of biological environments. Both macroscopic and microscopic herds move on asymmetric curved surfaces, like undulating grass plains or the surface layers of cells or embryos, which can render problems analytically intractable. In this work, we present a formulation of the Toner-Tu flocking theory that uses the finite element method to solve the governing equations on arbitrary curved surfaces. First, we test the developed formalism and its numerical implementation in channel flow with scattering obstacles and on cylindrical and spherical surfaces, comparing our results to analytical solutions. We then progress to surfaces with arbitrary curvature, moving beyond previously accessible problems to explore herding behavior on a variety of landscapes. Our approach allows the investigation of transients and dynamic solutions not revealed by analytic methods. It also enables versatile incorporation of new geometries and boundary conditions and efficient sweeps of parameter space. Looking forward, the work presented here lays the groundwork for a dialogue between Toner-Tu theory and data on collective motion in biologically-relevant geometries, from drone footage of migrating animal herds to movies of microscopic cytoskeletal flows within cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3