Super-enhancers require a combination of classical enhancers and novel facilitator elements to drive high levels of gene expression

Author:

Blayney JosephORCID,Francis Helena,Camellato Brendan,Mitchell Leslie,Stolper Rosa,Boeke JefORCID,Higgs DouglasORCID,Kassouf Mira

Abstract

AbstractSuper-enhancers (SEs) are a class of compound regulatory elements which control expression of key cell-identity genes. It remains unclear whether they are simply clusters of independent classical enhancers or whether SEs manifest emergent properties and should therefore be considered as a distinct class of element. Here, using synthetic biology and genome editing, we engineered the well characterised erythroid α-globin SE at the endogenous α-globin locus, removing all SE constituent elements in a mouse embryonic stem cell-line, to create a “blank canvas”. This has allowed us to re-build the SE through individual and combinatorial reinsertion of its five elements (R1, R2, R3, Rm, R4), to test the importance of each constituent’s sequence and position within the locus. Each re-inserted element independently creates a region of open chromatin and binds its normal repertoire of transcription factors; however, we found a high degree of functional interdependence between the five constituents. Surprisingly, the two strongest α-globin enhancers (R1 and R2) act sub-optimally both on their own and in combination, and although the other three elements (R3, Rm and R4) exhibit no discernible enhancer activity, they each exert a major positive effect in facilitating the activity of the classical enhancers (R1 and R2). This effect depends not simply on the sequence of each element but on their positions within the cluster. We propose that these “facilitators” are a novel form of regulatory element, important for ensuring the full activity of SEs, but distinct from conventional enhancer elements.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3