Sparse Parallel Independent Component Analysis and Its Application to Identify Stable and Replicable Imaging-genomic Association Patterns in UK Biobank

Author:

Duan Kuaikuai,Chen Jiayu,Fu Zening,Silva Rogers F.ORCID,Calhoun Vince D.ORCID,Dell’Orco Michela,Perrone-Bizzozero Nora I,Du Yuhui,Jiang Wenhao,Liu Jingyu

Abstract

AbstractData fusion analyses of brain imaging and genomics enable the linking of genomic factors to brain patterns. Due to the small to modest effect sizes of common genetic variants, it is usually challenging to reliably identify relevant genetic factors from the rest of the genome with the typical sample size in neuroimaging studies. To alleviate this problem, we propose sparse parallel independent component analysis (spICA) to leverage the sparsity of individual genomic sources, building upon the existing parallel independent component analysis (pICA) algorithm. Sparsity is enforced by performing Hoyer projection on the estimated independent sources. Simulation results demonstrate that spICA yields improved recovery of imaging-genomic associations and sources compared to pICA. We applied spICA to whole-brain gray matter volume (GMV) and whole-genome single nucleotide polymorphisms (SNPs) data of five different sets of 24,985 discovery samples in the UK Biobank. We identified three GMV sources significantly and stably associated with one SNP source and replicated these associations. GMV sources highlighted frontal, parietal, and temporal regions. Their corresponding loadings on individuals were related to multiple cognitive measures, and the temporal region interacts with age influencing cognition. The SNP component underscored SNPs in chromosome 17 that were enriched in the inflammation response pathway and in regulation effect in the prefrontal cortex via gene expression, methylation, transcription expression, and isoform percentage.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3