In situ visualization of opioid and cannabinoid drug effects using phosphosite-specific GPCR antibodies

Author:

Fritzwanker Sebastian,Nagel Falko,Kliewer Andrea,Stammer Viviane,Schulz Stefan

Abstract

AbstractG protein-coupled receptors (GPCRs) are important signal transducers that are phosphorylated upon activation at intracellular serine and threonine residues. Although antibodies that specifically recognize the phosphorylation state of GPCRs have been available for many years, efficient immunolocalization of phosphorylated receptors in their tissues of origin has not been possible. Here, we show that phosphorylation of receptors is highly unstable during routine immunohistochemical procedures, requiring the use of appropriate phosphatase inhibitors particular during tissue perfusion, post-fixation, and cryoprotection but not during immunostaining of tissue sections. We provide proof of concept using μ-opioid receptor (MOP) and cannabinoid receptor 1 (CB1) antibodies. Indeed, three of four well-characterized phosphosite-specific MOP antibodies, including pS375-MOP, pT376-MOP, and pT379-MOP, showed robust neuronal immunostaining in brain and spinal cord sections of opioid-treated mice only after inclusion of phosphatase inhibitors. We then extended this approach to the CB1 receptor and demonstrated that one of three newly-generated phosphosite-specific CB1 antibodies, namely pS425-CB1, showed striking staining of fibers and varicosities in brain slices from cannabinoid-treated mice. Although subsequent experiments showed that phospho-CB1 immunostaining was less sensitive to phosphatases, we conclude that the use of phosphatase inhibitors should always be considered in the development of immunohistochemical procedures for new phosphosite-specific GPCR antibodies. In summary, we anticipate that this improved protocol will facilitate the widespread use of phosphorylation state-specific antibodies to monitor the activation of endogenous GPCRs under physiological and pharmacological conditions. Our approach may also prove useful to confirm target engagement of GPCR drug candidates in native tissues.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3