Mapping nanoscale forces and potentials in live cells with microsecond 3D single-particle tracking

Author:

Hou ShangguoORCID,Zhang ChenORCID,Niver AnastasiaORCID,Welsher KevinORCID

Abstract

Abstract3D single-particle tracking has the potential to resolve the molecular level forces which dictate particle motion in biological systems. However, the information gleaned from 3D single-particle tracking often cannot resolve underlying nanoscale potentials due to limited spatiotemporal resolution. To this end, we introduce an active-feedback 3D tracking microscope that utilizes silver nanoparticles (AgNPs) as probes to study intricate biophysical events in live cells at the nanometer and microsecond scales. Due to this extremely high and durable scattering photon flux of the plasmonic particles, 1 MHz sampling frequency at nanometer precision in all three dimensions can be achieved over an unlimited observation times. In this work, we applied microsecond-sampling, active-feedback 3D single-particle tracking to investigate the interaction between AgNPs and nanoscale filopodium on the live-cell surface. The nanometer precision and microsecond sampling revealed that TAT peptide modified particles visit and dwell at local “hot spots” on the filopodium surface. The high sampling rate further enabled the calculation of the local forces and potentials within these nanoscale hotspots on the cylindrical surface of live cell filopodia. This study presents a promising tool to investigate intracellular biophysical events with unprecedented spatiotemporal resolution and a pipeline to study nanoscale potentials on three-dimensional cellular structures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3