Protein k-mers enable assembly-free microbial metapangenomics

Author:

Reiter Taylor E.ORCID,Pierce-Ward N. TessaORCID,Irber LuizORCID,Botvinnik Olga BorisovnaORCID,Brown C. TitusORCID

Abstract

AbstractAn estimated 2 billion species of microbes exist on Earth with orders of magnitude more strains. Microbial pangenomes are created by aggregating all genomes of a single clade and reflect the metabolic diversity of groups of organisms. As de novo metagenome analysis techniques have matured and reference genome databases have expanded, metapangenome analysis has risen in popularity as a tool to organize the functional potential of organisms in relation to the environment from which those organisms were sampled. However, the reliance on assembly and binning or on reference databases often leaves substantial portions of metagenomes unanalyzed, thereby underestimating the functional potential of a community. To address this challenge, we present a method for metapangenomics that relies on amino acid k-mers (kaa-mers) and metagenome assembly graph queries. To enable this method, we first show that kaa-mers estimate pangenome characteristics and that open reading frames can be accurately predicted from short shotgun sequencing reads using the previously developed tool orpheum. These techniques enable pangenomics to be performed directly on short sequencing reads. To enable metapangenome analysis, we combine these approaches with compact de Bruijn assembly graph queries to directly generate sets of sequencing reads for a specific species from a metagenome. When applied to stool metagenomes from an individual receiving antibiotics over time, we show that these approaches identify strain fluctuations that coincide with antibiotic exposure.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3