Evolutionary dynamics in non-Markovian models of microbial populations

Author:

Jafarpour Farshid,Levien Ethan,Amir Ariel

Abstract

In the past decade, great strides have been made to quantify the dynamics of single-cell growth and division in microbes. In order to make sense of the evolutionary history of these organisms, we must understand how features of single-cell growth and division influence evolutionary dynamics. This requires us to connect processes on the single-cell scale to population dynamics. Here, we consider a model of microbial growth in finite populations which explicitly incorporates the single-cell dynamics. We study the behavior of a mutant population in such a model and ask: can the evolutionary dynamics be coarse-grained so that the forces of natural selection and genetic drift can be expressed in terms of the long-term fitness? We show that it is in fact not possible, as there is no way to define a single fitness parameter (or reproductive rate) that defines the fate of an organism even in a constant environment. This is due to fluctuations in the population averaged division rate. As a result, various details of the single-cell dynamics affect the fate of a new mutant independently from how they affect the long-term growth rate of the mutant population. In particular, we show that in the case of neutral mutations, variability in generation times increases the rate of genetic drift, and in the case of beneficial mutations, variability decreases its fixation probability. Furthermore, we explain the source of the persistent division rate fluctuations and provide analytic solutions for the fixation probability as a multi-species generalization of the Euler-Lotka equation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic threshold in cell size control;Physical Review Research;2023-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3