Electrical Signaling in Cochlear Efferents is Driven by an Intrinsic Neuronal Oscillator

Author:

Hong Hui,Trussell Laurence OORCID

Abstract

AbstractEfferent neurons are believed to play essential roles in maintaining auditory function. The lateral olivocochlear (LOC) neurons, which project from the brainstem to the inner ear where they release multiple transmitters including peptides, catecholamines and acetylcholine, are the most numerous yet least understood elements of efferent control of the cochlea. Using in vitro calcium imaging and patch-clamp recordings, we found that LOC neurons in juvenile and young adult mice exhibited extremely slow waves of activity (~0.1 Hz). These seconds-long bursts of Na+ spikes were driven by an intrinsic oscillator dependent on L-type Ca2+ channels, and were not observed in prehearing mice, suggesting an age-dependent mechanism underlying the intrinsic oscillator. Using optogenetic approaches, we identified both ascending (cochlear nucleus) and descending (auditory cortex) sources of synaptic excitation, as well as the synaptic receptors used for such excitation. Additionally, we identified potent inhibition originating in the glycinergic medial nucleus of trapezoid body (MNTB). Conductance-clamp experiments revealed an unusual mechanism of electrical signaling in LOC neurons, in which synaptic excitation and inhibition served to switch on and off the intrinsically generated spike burst mechanism, allowing for prolonged periods of activity or silence controlled by brief synaptic events. Protracted bursts of action potentials may be essential for effective exocytosis of the diverse transmitters released by LOC fibers in the cochlea.Significance StatementThe lateral olivocochlear (LOC) neurons, being the most abundant auditory efferent control of the ear, remained largely unexplored. Here we reported that LOC neurons displayed patterned electrical activity at an unusually slow pace (~0.1 Hz), mediated by a calcium-dependent intrinsic oscillator. This is surprising given the speed and precision were believed to be the currency of signaling in the lower auditory system. Optogenetic experiments determined the glutamatergic and glycinergic sources of synaptic inputs to these neurons, while conductance-clamp experiments revealed that synaptic activity acts like switches for turning on or off prolonged spike activity driven by the intrinsic oscillator. This extended spike activity may be essential for effective exocytosis of the diverse transmitters released by LOC fibers in the cochlea.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3